
Mössbauer-Zeeman  spectroscopy using nuclear ground states dressed with RF photons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 9507

(http://iopscience.iop.org/0953-8984/10/42/016)

Download details:

IP Address: 171.66.16.210

The article was downloaded on 14/05/2010 at 17:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/42
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 9507–9524. Printed in the UK PII: S0953-8984(98)93532-9
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Abstract. As part of our general programme to develop the field of quantum nucleonics, we
have studied M̈ossbauer spectroscopy when there is Zeeman splitting of the nuclear levels and
a further interaction due to an applied rf-radiation field. We have applied the ‘dressed’ state
concept, developed in quantum electronics, to this situation. In particular, we have studied the
case when the rf frequency is in the neighbourhood of the ground state (spin= 1/2) splitting.
The dressed-state approach in this case treats the coupling of nuclear Zeeman levels, due to an
rf field, by considering the total system made up of nucleus, static magnetic field and rf field
as one global quantum system. This allows the time evolution of the system to be handled
straightforwardly. The energy levels and corresponding eigenstates of the system are calculated
as a function of the rf frequency and the magnitude of the rf magnetic flux density. Mössbauer
spectra are calculated for the57Fe case in which the source is subjected to both the static and
radiation fields while the absorber nuclear levels are unsplit. Spectra are given as a function of
the rf frequency, the magnitude of rf-field magnetic flux density, as well as the photon direction.

1. Introduction

The concept of a ‘dressed’ atomic state has been developed in the field of quantum
electronics [1–3]. [3] gives a very complete description of the dressed-state concept in the
quantum-electronics context. The interaction between the atomic system and the radiation
electromagnetic field is treated in a fashion in which both the atomic system and the radiation
electromagnetic field are quantum systems. Next the two quantum systems are combined
into one global quantum system. For this global quantum system the Hamiltonian is time
independent. Thus the time evolution of the global system is easily described in terms
of the usual time evolution operator. We are interested in applying these techniques, so
successfully developed in quantum electronics, to cases involving nuclei. This field has
recently been termed ‘quantum nucleonics’. In a previous series of publications [4–7] the
concept of a ‘dressed’ nucleus has been introduced in order to describe the interaction of
a nucleus with a radiation field where the ‘dressing’ is in the excited nuclear state. An
analogous study can be performed when the radiation field couples the two Zeeman split
sub-levels of the nuclear ground state having spin(Ig) = 1/2. This is the subject of this
paper. We will show how the57Fe-Mössbauer spectrum, using a single-line absorber and
a source ‘dressed’ in the ground state with rf photons, changes as a function of frequency
and strength of the rf field. We consider the case when the direction of the static Zeeman
magnetic field and photon emission direction lie in a plane perpendicular to the magnetic flux
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density of the rf radiation. In this article a case more general than previously considered will
be treated, in which the static Zeeman magnetic field is not necessarily along the direction
of the emitted photons. Of particular interest is the situation when the frequency of the rf
signal approaches the resonance condition, i.e. matches the frequency of the ground-state
Zeeman splitting.

The main motivation for the study of the interaction of radio-frequency fields and nuclei
using the completely quantum-mechanical description is, as mentioned above, due to the
emerging discipline of quantum nucleonics. The development of a gamma-ray laser would
be the pinnacle of this research [8]. The completely quantum-mechanical study has the
advantage that all operators are time independent (Schrödinger picture). This is possible
because the system consisting of nucleus+ static magnetic field+ rf field can be considered
as one global quantum system. Conceptually, as well as numerically, this approach differs
from the other studies (see references in section 5 below), where the radio-frequency field
is taken as a classical one. The results from both approaches are equivalent, although the
results based on the quantum-mechanical study can be obtained in a simpler and more
elegant way and, as a consequence, should prove useful in the further development of
quantum nucleonics.

The paper is divided into six sections. Section 2 treats the familiar case when the57Fe
nuclei are in a static magnetic field in the absence of any rf field. The nuclear energy levels
and eigenstates, for the first-excited and ground states, are indicated in this simple case. This
section provides an opportunity to introduce the notation used in subsequent sections. In
section 3 the new nuclear energy levels and eigenstates are determined when the additional
rf radiation is applied producing the so-called ‘dressed states’ in the nuclear ground states.
A brief discussion of the time evolution of the nuclear ground states and the connection to
Rabi oscillations is also presented. In section 4 the spontaneous emission of the57Fe source
from the first-excited state levels to the ‘dressed’ ground state levels is calculated. Then,
assuming an unsplit, i.e. single-line,57Fe absorber, representative Mössbauer transmission
spectra are simulated. Section 5 contains some additional discussions and section 6 gives
conclusions.

2. Nuclear energy eigenvalues and eigenstates in the absence of rf coupling

Let us consider a nucleus in a static magnetic field in the absence of the rf-radiation field.
The interaction Hamiltonian is simply the usual magnetic dipole interaction. The excited
state is labelled bye and the ground state is labelledg. The excited- and ground-state
magnetic dipole moments areµe andµg, andB0 is the static Zeeman magnetic field taken
to be along thez′-axis. (Anotherz-axis is introduced later, thus thez′ here.)

The Hamiltonian is diagonal in thez′-axis system, and the eigenstates are ‘pure’m-
states. The nuclear spin of the first excited state of57Fe (Ie) is 3/2 and that of the ground
state(Ig) is 1/2. The energies of the nuclear states in the absence of the rf radiation are
simply

Ee,m′e = E0+ |γe|B0m
′
e

Eg,m′g = −γgB0m
′
g

(1)

where the magnetic moments of the excited and ground states are given by

µe = γeIe andµg = γgIg (2)

and γe, the excited-state gyromagnetic ratio, is negative whileγg, the ground-state
gyromagnetic ratio, is positive for57Fe.
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The corresponding eigenstates in thez′-axis system can be written simply as

|3/2, m′e〉 and |1/2, m′g〉. (3)

These eigenstates are nothing more than the familiar nuclear Zeeman states. In the next
section we introduce the applied rf field.

3. Energy eigenvalues and eigenstates of the ‘dressed’ nucleus

3.1. General expressions

Now let us consider the nucleus in a static magnetic field and add the presence ofn photons
corresponding to one mode of the radiation field. For the moment we will not consider
the excited nuclear states. This is because the radiation field only has a significant role
when the rf frequency is close to the resonance condition. In the absence of any interaction
between the nucleus and the radiation field, the total Hamiltonian for the ground state can
be written

Hg = −µg ·B0+ h̄ω(a+a + 1
2) (4)

where the only additional features areω, the frequency of the rf field, anda+ and a, the
usual creation and annihilation operators of the rf-radiation field. Neglecting at this stage
any interaction between the nuclear ground states and the rf-radiation field, the eigenstates of
this system are the direct product of the nuclear eigenstates, given above, and the rf-radiation
eigenstates. The eigenstates of the rf-radiation field are commonly written|n〉, wheren is
the eigenvalue of the number operatora+a.

There are two situations that we must consider. First we consider (case 1) the situation
in which the nucleus is in the lowest ground-state nuclear energy level, namely|1/2, 1/2′〉,
and there aren photons in the radiation field. The complete state is denoted|1/2, 1/2′〉⊗|n〉.
There is another state of approximately the same energy. This state is the one in which the
nucleus is in its higher ground-state level and there is one less photon in the rf field. This
state is represented by|1/2, −1/2′〉 ⊗ |n − 1〉. Thus, for this condition, we introduce two
orthonormal states defined as

|ϕ1〉 = |1/2, 1/2′〉 ⊗ |n〉 and |ϕ2〉 = |1/2,−1/2′〉 ⊗ |n− 1〉. (5)

Unless the sample is at a very low temperature, such that only the lowest nuclear ground
state is occupied, we have the additional possibility (case 2) that the system is in the upper
ground-state nuclear level when there aren photons in the rf-radiation field. In this case
the nucleus can emit an rf photon, return to the lower nuclear ground state and increase the
number of photons in the field by one. So, for this condition, we introduce an additional
set of two orthonormal states defined as

|ϕ′1〉 = |1/2,−1/2′〉 ⊗ |n〉 and |ϕ′2〉 = |1/2, 1/2′〉 ⊗ |n+ 1〉. (6)

3.1.1. Case 1. For the two-dimensional vector space spanned by this set, namely (5), one
can write down immediately the energy eigenvalues in the absence of rf coupling

|ϕ1〉 has energyE1g = − 1
2γgh̄B0+ h̄ω(n+ 1

2)

|ϕ2〉 has energyE2g = 1
2γgh̄B0+ h̄ω(n− 1

2).
(7)

The energy difference is then:

E2g − E1g = γgh̄B0− h̄ω (8)
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and we will setγgB0 = ωg so

E2g − E1g = h̄1ω where1ω = ωg − ω. (9)

Sinceγg is positive,ωg > 0.
At resonance1ω = 0 andE1g = E2g. This energy has then a twofold degeneracy.
Now we introduce the interaction between the rf-radiation field and the two nuclear

ground-state Zeeman sublevels, i.e. the two orthonormal vectors in our space. This
interaction is described by the interaction HamiltonianHint given by

Hint − µg ·Brf (10)

where the magnetic flux densityBrf of the rf-radiation field is given by [9]

Brf = − i

c

√
h̄ω

2ε0V
(εa eik·r − ε∗a+ e−ik·r)× uk. (11)

In (11)V is the (cubic) volume in which the rf-radiation field is generated,ε is the unit vector
(real or complex) describing the polarization of the photons,k is the photon wavevector
with |k| = ω/c anduk = k/|k|. In the usual long wavelength limit (e±k·r ≈ 1), and using
(2), (10) becomes

Hint = i

c
γgh̄

√
h̄ω

2ε0V
Ig · (εa − ε∗a+)× uk. (12)

All operators are time-independent (Schrödinger picture). In order to proceed we have to
specify the polarization of the rf-radiation field and hence the direction of the rf magnetic
flux density. We will chose the polarization to be linear and the rf magnetic flux density to
be along they ′-axis, i.e.

ε× uk = u′y (13)

whereu′y is a unit vector in the direction of they ′-axis, which is perpendicular to the
static magnetic fieldB0, which is along thez′-axis. A still more general case could be
treated. This, however, would make the resulting expressions more cumbersome although
the analysis is straightforward. With the specified polarization of the rf-radiation field,Hint

becomes

Hint = −γgh̄
2c

√
h̄ω

2ε0V
(I−a + I+a+)+ γgh̄

2c

√
h̄ω

2ε0V
(I+a + I−a+) (14)

whereI+ and I− are the usual nuclear spin raising and lowering operators in the primed
axis system. When the lowest energy corresponds to the state with quantum number 1/2,
only the first two terms couple the states. The other two correspond to virtual (energy
non-conservation) processes. It is this case that will be considered in the following (e.g.
ground state of57Fe). If, on the contrary, the lowest energy were the state characterized by
−1/2, only the last two terms would couple the states and the first two would correspond
to virtual processes.

The total Hamiltonian of the global system is then

H = H0+Hint (15)

whereHint is now given by the first two terms of expression (14). Evaluating the matrix in
the case 1 basis system gives

Hg =
(
E1g g

√
n

g
√
n E2g

)
(16)
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where

g = −γgh̄
2c

√
h̄ω

2ε0V
. (17)

The eigenvalues ofHg can be found after a straightforward calculation. They are

λ± = E1g + E2g

2
± 1

2

√
(E2g − E1g)2+ 4g2n = nh̄ω ± 1

2

√
h̄21ω2+ 4g2n. (18)

3.1.2. Case 2. In a similar fashion we now treat the two-dimensional vector space arising
from case 2. The energy eigenvalues in the absence of rf coupling are

|ϕ′2〉 has energyE′1g = − 1
2γgh̄B0+ h̄ω(n+ 3

2)

|ϕ′1〉 has energyE′2g = 1
2γgh̄B0+ h̄ω(n+ 1

2).
(19)

Following the same procedure as above gives

H ′g =
(

E′1g g
√
n+ 1

g
√
n+ 1 E′2g

)
. (20)

Again the eigenvalues ofH ′g can be found. They are

λ′± =
E′1g + E′2g

2
± 1

2

√
(E′2g − E′1g)2+ 4g2(n+ 1)

= (n+ 1)h̄ω ± 1

2

√
h̄21ω2+ 4g2(n+ 1). (21)

It is not difficult to show that

4g2n = 1

2

B2
rf

B2
0

h̄2ω2
g (22)

whereBrf is the magnitude of the magnetic flux density in the rf radiation. Also it is
not difficult to show that under normal conditionsn � 1. Using these considerations, the
energy eigenvalues are shown in figure 1. Figure 1 shows the energiesE1g, E2g, E′1g and
E′2g, the eigenvalues in the absence of the rf coupling, as a function of the ratio of the rf
frequency (ω) to the resonant frequency (ωg). The actual energies have been redefined by
subtracting everywherenh̄ω. These are the four straight lines in figure 1 (only one of them,
E2g, has a negative slope because of the presence of− 1

2h̄ω). The eigenvaluesλ± andλ′±
(also ‘renormalized’ by subtraction ofnh̄ω), which are a consequence of the rf coupling,
are also shown in figure 1 as a function of the same ratio. The magnitude of the rf magnetic
field is taken as 8 tesla and the magnitude of the Zeeman magnetic field is taken as 33
tesla. There are several observations that one should make from this figure. Notice that at
ω = ωg, the resonant frequency,E1g = E2g andE′1g = E′2g. Furthermore we note that

λ− is close toE1g whenω � ωg

(
lim
ω→0

λ− = E1g

)
λ− is close toE2g whenω � ωg

(
lim
ω→∞ λ− = E2g

) (23)

and

λ+ is close toE2g whenω � ωg

(
lim
ω→0

λ+ = E2g

)
λ+ is close toE1g whenω � ωg

(
lim
ω→∞ λ+ = E1g

)
.

(24)
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Figure 1. Eigenvalues of the dressed and undressed nuclear spin 1/2 Zeeman-split ground
state corresponding to the presence ofn andn+ 1 photons.nh̄ω has been subtracted from all
energies. The eigenvalues are plotted as a function of the ratio of the angular frequencyω of the
transverse applied rf field to the resonant ground-state Zeeman-split frequencyωg . The Zeeman
magnetic fieldB0 is taken equal to 33 tesla and the magnitude of the rf magnetic flux density
Brf is equal to 8 tesla. The order of the energy eigenvalues can be identified by considering
the figure at the frequency ratio of about 0.8. Starting from the top curve and going down, the
curves correspond toλ′+, E′2g , E′1g , λ′−, λ+, E2g , E1g andλ−.

This means that at resonance there is a twofold degeneracy, in the absence of the rf coupling,
which is removed by the interaction. Of course a similar situation exists forλ′± as shown
in figure 1. Let us introduce the splitting parameters1 and1′ corresponding to the energy
separation between each pair of dashed lines in figure 1, where

1 =
√
h̄21ω2+ 4g2n =

√
h̄21ω2+ 1

2

B2
rf

B2
0

h̄2ω2
g

1′ =
√
h̄21ω2+ 4g2(n+ 1) =

√
h̄21ω2+ 1

2

B2
rf

B2
0

h̄2ω2
g +

1

2

B2
rf

B2
0n
h̄2ω2

g.

(25)

Then (18) and (21) become

λ± = nh̄ω ± 1
21

λ′± = (n+ 1)h̄ω ± 1
21
′.

(26)

At resonance one has

1 = 2g
√
n =

√
1

2

B2
rf

B2
0

h̄2ω2
g

1′ = 2g
√
n+ 1=

√
1

2

B2
rf

B2
0

h̄2ω2
g +

1

2

B2
rf

B2
0n
h̄2ω2

g.

(27)

For largen, 1 ≈ 1′. The condition of largen is always realized, as mentioned above.
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Due to the interaction of the nuclei with the rf field the quasi-degeneracy of the energy is
lifted. The splitting parameter1 can be interpreted as a Rabi splitting, as will be discussed
below in section 3.3.

In the next section we will find the eigenstates of the system in the presence of rf
coupling. For the situation discussed in this paper the excited nuclear states are not
coupled by the rf-radiation field (far off-resonance condition), while the nuclear ground-
state sublevels are coupled strongly by the rf-radiation field.

3.2. Eigenstates

In order to calculate the possible transition energies we need to find the eigenstates belonging
to λ± andλ′±. A straightforward calculation leads to the following normalized eigenvectors
belonging to the eigenvaluesλ− andλ+.

|ψ−〉 = − sin
α

2
|ϕ1〉 + cos

α

2
|ϕ2〉

and

|ψ+〉 = cos
α

2
|ϕ1〉 + sin

α

2
|ϕ2〉 (28)

whereα, the ‘mixing angle’, is defined by

tanα = 2g
√
n

h̄ω − γgh̄B0
= 2g

√
n

h̄1ω
= 1√

2

Brf

B0

ωg

1ω
0< α 6 π. (29)

Notice that at resonanceα = π/2.
Similarly the normalized eigenvectors belonging toλ′− andλ′+ are respectively

|ψ ′−〉 = − sin
α′

2
|ϕ′2〉 + cos

α′

2
|ϕ′1〉

and

|ψ ′+〉 = cos
α′

2
|ϕ′2〉 + sin

α′

2
|ϕ′1〉 (30)

where the mixing angleα′ is defined by

tanα′ = 2g
√
n+ 1

h̄ω − γgh̄B0
= 2g

√
n+ 1

h̄1ω
≈ 1√

2

Brf

B0

ωg

1ω
0< α′ 6 π. (31)

Equation (31) shows that for largen, α ≈ α′.

3.3. Time dependence

In this section we will treat the time dependence of the nuclear ground states which are
coupled by the rf field. This is not difficult to do because of the dressed-state formulation.
We will consider only the case 1 condition, since the case 2 situation can be treated in
essentially the same way.

Assume that at timet = 0 the system is in the state|ϕ1〉. This state is not an eigenstate
of the system when there is rf coupling. However, it is easy to invert (28) to obtain

|ϕ1〉 = cos
α

2
|ψ+〉 − sin

α

2
|ψ−〉

and

|ϕ2〉 = sin
α

2
|ψ+〉 + cos

α

2
|ψ−〉. (32)
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Thus, if we assume that the resonance condition is satisfied, we can write

|ϕ1〉 = 1√
2
|ψ+(t = 0)〉 − 1√

2
|ψ−(t = 0)〉. (33)

The time evolution of this state is easily determined because the eigenstates of the system
evolve in time according to the usual time evolution operator. Thus we can express the
time evolution of the initial state as

|ϕ1(t)〉 = 1√
2

e−iλ+t/h̄|ψ+(t = 0)〉 − 1√
2

e−iλ−t/h̄|ψ−(t = 0)〉. (34)

The time-dependent probability for finding the system in its original state is obtained by
finding that

|〈ϕ1 | ϕ1(t)〉|2 = cos2
(
1t

2h̄

)
(35)

where1 is the energy separation of the two energy levels evaluated on resonance. This
shows the familiar Rabi behaviour in which the system is initially in a particular state, but
as a function of time oscillates between the initial state and another one, in this case|ϕ2〉.
Similarly one can show the other familiar result

|〈ϕ2 | ϕ1(t)〉|2 = sin2

(
1t

2h̄

)
. (36)

Although these results are for the on-resonance condition, it is clear that the formalism is
capable of handling the most general cases.

4. Spontaneous emission

4.1. Energies of the emitted photons

As already mentioned above we suppose that the excited-state nuclear Zeeman sublevels are
not coupled by the rf-radiation field. This is, for most cases, a reasonable assumption since
the hyperfine splitting in the excited state is generally very different from that in the ground
state. Thus, since we are considering the case of resonance in the ground state, we assume
no rf coupling in the excited states. The energies of the system formed by the first-excited
nuclear states and the rf field, for the far off-resonance condition, are simply

Ee,me = E0− γeh̄B0m
′
e + h̄ω(n+ 1

2) (37)

with −3/2 6 m′e 6 3/2. The corresponding eigenstates are direct product states of|3/2,
m′e〉 with the eigenstates of the radiation field, namely|n〉.The transition energies between
these states and the ground states are listed in table 1. Next, we need to calculate the
transition probabilities for each transition.

4.2. Transition probabilities

We will now consider the magnetic dipole (M1) transition which applies to the 14.4 keV
transition in57Fe. The interaction describing spontaneous emission through an M1-transition
is given by a complicated expression [10], which can be reduced to

Hsp.em. = i

c
µ ·

∑
l,σ

√
h̄ωl

2ε0V
ul(al,σ eil·r − a+l,σ e−il·r). (38)
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Table 1. Energies and relative transition probabilities of photons emitted by an ensemble of
nuclei (in a static constant hyperfine magnetic field) having an excited state 3/2 and a ground
state 1/2 with the ground-state Zeeman levels coupled by a transverse rf field for an arbitrary
coupling strength and for any photon emission direction in the plane perpendicular to the applied
rf magnetic flux density.

Transitions Energies Relative transition probabilities

E1 = Ee,−3/2 − λ− E0 − 3|γe|h̄B0

2
+ h̄ω

2
+ 1

2
0

E2 = Ee,−1/2 − λ− E0 − |γe|h̄B0

2
+ h̄ω

2
+ 1

2
sin2 α

2

(
sin4 β

2
+ cos4

β

2

)
E3 = Ee,+1/2 − λ− E0 + |γe|h̄B0

2
+ h̄ω

2
+ 1

2
8 sin2 α

2
sin2 β

2
cos2

β

2

E4 = Ee,+3/2 − λ− E0 + 3|γe|h̄B0

2
+ h̄ω

2
+ 1

2
3 sin2 α

2

(
sin4 β

2
+ cos4

β

2

)
E5 = Ee,−3/2 − λ+ E0 − 3|γe|h̄B0

2
+ h̄ω

2
− 1

2
0

E6 = Ee,−1/2 − λ+ E0 − |γe|h̄B0

2
+ h̄ω

2
− 1

2
cos2

α

2

(
sin4 β

2
+ cos4

β

2

)
E7 = Ee,+1/2 − λ+ E0 + |γe|h̄B0

2
+ h̄ω

2
− 1

2
8 cos2

α

2
sin2 β

2
cos2

β

2

E8 = Ee,+3/2 − λ+ E0 + 3|γe|h̄B0

2
+ h̄ω

2
− 1

2
3 cos2

α

2

(
sin4 β

2
+ cos4

β

2

)
E9 = Ee,−3/2 − λ′− E0 − 3|γe|h̄B0

2
− h̄ω

2
+ 1

2
3 cos2

α

2

(
sin4 β

2
+ cos4

β

2

)
E10 = Ee,−1/2 − λ′− E0 − |γe|h̄B0

2
− h̄ω

2
+ 1

2
8 cos2

α

2
sin2 β

2
cos2

β

2

E11 = Ee,+1/2 − λ′− E0 + |γe|h̄B0

2
− h̄ω

2
+ 1

2
cos2

α

2

(
sin4 β

2
+ cos4

β

2

)
E12 = Ee,+3/2 − λ′− E0 + 3|γe|h̄B0

2
− h̄ω

2
+ 1

2
0

E13 = Ee,−3/2 − λ′+ E0 − 3|γe|h̄B0

2
− h̄ω

2
− 1

2
3 sin2 α

2

(
sin4 β

2
cos4

β

2

)
E14 = Ee,−1/2 − λ′+ E0 − |γe|h̄B0

2
− h̄ω

2
− 1

2
8 sin2 α

2
sin2 β

2
cos2

β

2

E15 = Ee,+1/2 − λ′+ E0 + |γe|h̄B0

2
− h̄ω

2
− 1

2
sin2 α

2

(
sin4 β

2
+ cos4

β

2

)
E16 = Ee,+3/2 − λ′+ E0 + 3|γe|h̄B0

2
− h̄ω

2
− 1

2
0

µ is the ‘real’ magnetic dipole operator which contains, in principle, the properties of all
nucleons composing the nucleus. However we do not need the exact expression, since
the magnetic moments and spins of the nuclear states in question are already known. The
term with the summation sign is proportional to the virtual magnetic flux density due to
the vacuum fluctuations. Theal,σ and a+l,σ are respectively the annihilation and creation
operators relative to the virtual field photon with wave vectorl and polarizationσ . The
other quantities in (38) are standard in the theory of quantized fields. The only thing that
we have to realize here is that, due to the specific form ofHsp.em., the number of real rf
photons cannot change by the process of spontaneous emission. This means that when the
global system emits a gamma ray, going from a|ψe〉 to one of its ground states given by
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eigenvectors|ψ−〉, |ψ+〉, |ψ ′−〉 and |ψ ′+〉 (see (28) and (30)), one only has to consider the
part of these states containing|n〉. Furthermore there is a nuclear-state selection rule which,
for a magnetic dipole transition, is1m = mg −me = 0, ±1.

We will now introduce anotherz-axis which will be our quantization axis for our final
calculations. Thisz-axis is in the direction of the recorded gamma rays determined by the
position of the detector relative to the radioactive source. We assume that thez-axis is
also perpendicular to they ′-axis. This is not essential. However, if this condition is not
imposed the resulting expressions become quite cumbersome. The direction of the static
Zeeman magnetic field, as noted above, is along thez′-axis which, in general, makes an
angleβ with respect to thez-axis. One can easily go from thez′-axis system to thez-axis
system by a rotation about they ′-axis through an angleβ. With respect to this newz-axis
system the nuclear ground- and excited-state levels are no longer pure ‘m’ states. However
the states with respect to this newz-axis can be easily found by using the familiar rotation
matrices [10], usually written asdIm′m. The ‘old’ states can be expressed in terms of the
‘new’ states by

|I,m′〉 =
∑
m

|I,m〉dIm,m′(β) (39)

where for our nuclear ground states we have

d1/2 =

 cos
β

2
sin

β

2

− sin
β

2
cos

β

2

 . (40)

The two ground states can thus be written as

| 12, 1
2
′〉 = cos

β

2
| 12, 1

2〉 − sin
β

2
| 12,− 1

2〉

| 12,− 1
2
′〉 = sin

β

2
| 12, 1

2〉 + cos
β

2
| 12,− 1

2〉.
(41)

Next we need to find the form of the excited nuclear eigenstates in thez-axis system.
This can, of course, be done in a similar fashion. The rotation matrix for this case is

d3/2 =



cos3
β

2

√
3 cos2

β

2
sin

β

2

−
√

3 cos2
β

2
sin

β

2
cos

β

2

(
3 cos2

β

2
− 2

)
√

3 cos
β

2
sin2 β

2
sin

β

2

(
3 sin2 β

2
− 2

)
− sin3 β

2

√
3 cos

β

2
sin2 β

2

√
3 cos

β

2
sin2 β

2
sin3 β

2

− sin
β

2

(
3 sin2 β

2
− 2

) √
3 cos

β

2
sin2 β

2

cos
β

2

(
3 cos2

β

2
− 2

) √
3 cos2

β

2
sin

β

2

−
√

3 cos2
β

2
sin

β

2
cos3

β

2


. (42)
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The first-excited nuclear eigenstates can be written in thez-axis system as

|3/2, m′e〉 =
∑
me

|3/2, me〉d3/2
me,m′e

(β) (43)

where the needed matrix elements are given in (42).
In order to calculate the transition probabilities we need the eigenfunctions for the

global system. Since we assume that we are far off resonance for the nuclear excited states,
Ie = 3/2, these global eigenfunctions can be expressed easily in thez-axis system as

|ψe(m′e)〉 =
∑
me

|3/2, me〉d3/2
me,m′e
⊗ |n〉. (44)

Writing these out explicitly, we find

|ψe(3/2)′〉=

cos3
β

2
|3/2, 3/2〉 −

√
3 cos2

β

2
sin

β

2
|3/2, 1/2〉

+
√

3 cos
β

2
sin2 β

2
|3/2,−1/2〉 − sin3 β

2
|3/2,−3/2〉

⊗|n〉

|ψe(1/2)′〉=


√

3 cos2
β

2
sin

β

2
|3/2, 3/2〉 + cos

β

2

(
3 cos2

β

2
− 2

)
|3/2, 1/2〉

+ sin
β

2

(
3 sin2 β

2
− 2

)
|3/2,−1/2〉 +

√
3 cos

β

2
sin2 β

2
|3/2,−3/2〉

⊗|n〉

|ψe(−1/2)′〉=


√

3 cos
β

2
sin2 β

2
|3/2, 3/2〉 − sin

β

2

(
3 sin2 β

2
− 2

)
|3/2, 1/2〉

+ cos
β

2

(
3 cos2

β

2
− 2

)
|3/2,−1/2〉 −

√
3 cos2

β

2
sin

β

2
|3/2,−3/2〉

⊗|n〉

|ψe(−3/2)′〉=

sin3 β

2
|3/2, 3/2〉 +

√
3 cos

β

2
sin2 β

2
|3/2, 1/2〉

+
√

3 cos2
β

2
sin

β

2
|3/2,−1/2〉 + cos3

β

2
|3/2,−3/2〉

⊗|n〉. (45)

Now the eigenfunctions for the rf-coupled global system ground-state levels, in the
z-axis system, can be obtained by combining (28), (30) and (41). The results, written out



9518 J Odeurs and G R Hoy

explicitly, are

|ψg,−〉 = − sin
α

2

(
cos

β

2

∣∣∣∣12, 1

2

〉
− sin

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n〉

+ cos
α

2

(
sin

β

2

∣∣∣∣12, 1

2

〉
+ cos

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n− 1〉

|ψg,+〉 = cos
α

2

(
cos

β

2

∣∣∣∣12, 1

2

〉
− sin

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n〉

+ sin
α

2

(
sin

β

2

∣∣∣∣12, 1

2

〉
+ cos

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n− 1〉

|ψ ′g,−〉 = − sin
α′

2

(
cos

β

2

∣∣∣∣12, 1

2

〉
− sin

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n+ 1〉

+ cos
α′

2

(
sin

β

2

∣∣∣∣12, 1

2

〉
+ cos

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n〉

|ψ ′g,+〉 = cos
α′

2

(
cos

β

2

∣∣∣∣12, 1

2

〉
− sin

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n+ 1〉

+ sin
α′

2

(
sin

β

2

∣∣∣∣12, 1

2

〉
+ cos

β

2

∣∣∣∣12,−1

2

〉)
⊗ |n〉

(46)

where we have explicitly added the subscriptg to emphasize the nuclear ground states. To
avoid any confusion it should be mentioned at this stage that the prime at the left-hand side
of the last two expressions of (46) refers to the states corresponding to the eigenvaluesλ′±,
given by expression (21).

The matrix element describing the spontaneous emission from an initial state|ψi〉 to a
final state|ψf 〉 is generally written as

Mfi = 〈ψf |Hsp.em.|ψi〉 (47)

whereHsp.em. is the operator describing the transition. This expression takes on a simplified
form for a magnetic dipole transition between two eigenstates in thez-axis system. One
can write [11, 12] for the amplitude and polarization of the emitted phonon

AIfmf ;Iimi = C(If ,mf ; 1,M|Iimi)X1,M (48)

where C is an overall constant containing amongst others the nuclear reduced matrix
element, (If ,mf ; 1,M | Iimi) is the Clebsch–Gordan coefficient andX1,M is the vector
spherical harmonic. The vector spherical harmonicsX1,M (M = 1, 0,−1), representing
the photon in the final state of the system, are appropriate for magnetic dipole radiation
since they describe not only the angular distribution but also the polarization of the emitted
photons.

In our case|ψi〉 and |ψf 〉 are linear combinations of eigenstates of thez-component of
angular momentum. So evaluating (47) leads to a sum of matrix-element terms where each
term is of the form given by (48).
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The vector spherical harmonics for dipole radiation are

X1,±1 =
√

3

16π
(e±iφaθ ± i cosθ e±iφaφ)

X1,0 = i

√
3

8π
sinθaφ

(49)

whereaθ andaφ are the usual unit vectors in spherical coordinatesθ , φ. From conservation
of angular momentum the appropriate vector spherical harmonic is associated with the
change in the nuclear spin projection quantum number. In thez-directionθ = 0 andφ = 0,
so that only two vector spherical harmonics are non-zero and one has

X1,±1 =
√

3

16π
(ux ± iuy)

X1,0 = 0.

(50)

These correspond to photons having right- and left-handed circular polarization, i.e.−1 and
+1 helicities. The nuclear transitions that produce radiation for this case correspond to
1m = ±1 only. (Also note thatX1,1 ·X∗1,−1 = 0.) With the aid of (45)–(50), the transition
matrix elements and hence the transition probabilities can be calculated. They are given in
table 1. There are 16 different energies to which have been assigned numbers from 1 to 16
in the first column of table 1. Figure 2 gives the complete energy spectrum as well as the
12 possible transitions consistent with the M1 selection rules. From table 1, the transition
probabilities depend on the anglesα and β. The angleα is determined by the coupling
strength of the interaction between the nuclei and the rf field as seen in (29) and (31). This
coupling strength depends on the ratio of the magnitude of the rf magnetic flux density to
that of the static Zeeman field as well as the detuning factor1ω. The angleβ is determined
by the direction of the Zeeman magnetic field, given byz′, relative to the photon emission
direction taken as along thez-axis.

From table 1 it can be verified easily that one obtains the well known emission spectra
under familiar cases. For example, consider the case when there is no rf coupling (α = 0)
and the photon is emitted along the direction of the Zeeman magnetic field (β = 0). It is
easy to see that the six emission lines, ordered in terms of increasing energy, have intensities
of 3, 0, 1, 1, 0, 3. Similarly when there is no rf coupling and the photon emission direction is
at 90◦ with respect to the Zeeman magnetic field the emission intensities are 3, 4, 1, 1, 4, 3.
Figure 3 shows the source emission spectrum under these conditions assumingB0 equals
33 tesla.

Under the same conditions as mentioned above, consider the case when the rf-resonance
condition is satisfied, i.e.α = π/2. Now each emission line is split into two. Thus, for
photon emission along the Zeeman magnetic field, the emission spectrum now has a total
of eight peaks composed of four closely spaced pairs of peaks. Similarly, when the photon
direction is at 90◦ with respect to the Zeeman magnetic field the emission spectrum consists
of 12 peaks composed of six closely spaced pairs of peaks. Figure 4 shows the source
emission spectrum under these two conditions assumingB0 equals 33 tesla and the strength
of the rf coupling is such that1 = 40, where0 is the natural linewidth of the first-excited
nuclear state.

4.3. Simulated M¨ossbauer spectra

The complete information about the energies and relative line intensities of radiation emitted
by an ensemble of57Fe nuclei in a Zeeman magnetic field when there is an additional
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Figure 2. Energy scheme of an ensemble of dressed nuclei (ground-state dressing by an rf
field) of an ensemble of nuclei in a magnetic field having an excited-state spin= 3/2 and a
ground-state spin= 1/2. The 12 possible transitions are indicated. The numbers at the bottom
correspond to the same energy numbering as in the first column of table 1.

Figure 3. Gamma-ray emission spectrum from a Zeeman-split57Fe source when the photon
direction is parallel to the Zeeman field (a) and perpendicular to the Zeeman field (b) in the
absence of rf coupling. The energy of the photons is relative to the field-free energy separation
between the ground- and first-excited-state nuclear levelsE0, and in units of the natural linewidth
0. (The Zeeman magnetic fieldB0 is taken as 33 tesla.)

interaction due to a transverse rf field, which couples the ground state, is contained in table 1.
These results apply for all angles of the internal constant Zeeman hyperfine magnetic field
(B0) lying in the plane perpendicular to the magnetic flux densityBrf of the rf field and
for all coupling strengths arising from the magnitude of the rf magnetic flux density.
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Figure 4. Gamma-ray emission spectrum from a Zeeman-split57Fe source when the photon
direction is parallel to the Zeeman field (a) and perpendicular to the Zeeman field (b) in the
presence of rf coupling in the ground state on resonance. The strength of the rf coupling is taken
to be1 = 40. As the strength of the rf coupling increases, the energy separation of the doublets
would increase. The energy of the photons is relative to the field-free energy separation between
the ground- and first-excited-state nuclear levelsE0, and in units of the natural linewidth0.
(The Zeeman magnetic fieldB0 is taken as 33 tesla.)

The separation in energy of the doublet peaks is given by the splitting parameters1

and1′ which depend on the coupling strength between the rf field and the nucleus, see
(25). In order to observe these spectra using the Mössbauer effect, splittings on the order
of, or larger than, the natural linewidth0 of the nuclear first-excited state are necessary.
For 57Fe, 0 = 4.6× 10−9 eV. Such small quantities can be put in evidence by means of
the Mössbauer effect, which we will recall very briefly. Basically the Mössbauer effect
is the recoil-free emission and absorption of resonant gamma radiation. The experimental
technique is most often based on the detection of the forward-scattered radiation emitted by
a radioactive source after passing through a resonant absorber. The energy of the emitted
photons can be modulated by moving the source with respect to the absorber. Suppose the
absorber is a non-magnetic material in which the stable57Fe nuclei are incorporated in a
cubic environment (‘single-line absorber’). Each time the energy of the Doppler-modulated
emitted photon coincides with the allowed transition in the absorber, a dip in the transmitted
intensity will be observed. Thus the shape of the Mössbauer effect spectrum gives exact
information on the radiated spectrum. To scan the natural linewidth of the first-excited state
of 57Fe, a velocity change of about 0.2 mm s−1 is needed. There are many articles and
books describing the M̈ossbauer effect in detail [13].

Figure 5 gives the shape of M̈ossbauer spectra for a Zeeman-split source (B0 = 33 tesla)
consisting of an ensemble of rf-dressed nuclei (‘dressing’ in the ground state) and a single-
line absorber. Results are shown for the case whenβ = 0 and the splitting parameter
1 = 40. Notice that, in general, the values of the splitting parameter1 and the mixing
angleα are both functions of the rf frequencyω and the magnitude of the rf magnetic
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Figure 5. Mössbauer transition spectra using a Zeeman-split57Fe source and a single-line
absorber when the photon direction is parallel to the Zeeman field in the presence of rf coupling
in the ground state as in figure 4(a). In this case the rf radiation is off resonance;ω = 0.99 ωg
(a), andω = 1.01 ωg (b). Notice the asymmetry in the doublet dips.

flux densityBrf . Figure 5(a) shows the case whenω = 0.99 ωg while figure 5(b) is for
ω = 1.01 ωg. Notice the change in the asymmetry of the doublet peaks as the rf frequency
is varied from below to above the resonant frequency. Figure 6 shows results similar to
those of figure 5 except nowβ = π/2.

5. Discussion

Table 1 contains the complete information about the line intensities and energies of photons
emitted by an ensemble of spin 3/2 excited-state nuclei, embedded in a sample in which
the Zeeman hyperfine magnetic field is constant in magnitude and direction, decaying to a
nuclear spin 1/2 ground state. The spin 1/2 ground states are assumed to be coupled by
a transverse rf radiation field. Table 1 gives the line intensities and photon energies for all
emission directions and orientations of the Zeeman hyperfine magnetic field, assuming both
lie in the plane perpendicular to the applied rf magnetic flux density. Table 1 also gives
results for all coupling strengths of the two ground states expressed through the mixing
angleα. The mixing angleα is determined by the ratio of the magnitude of the rf magnetic
flux density to the Zeeman magnetic field, and the rf frequency. The Mössbauer spectra can
be derived from the data of table 1 for all such configurations. For an arbitrary emission
direction, in the above-mentioned plane, 12 different photons energies are possible. In
general the M̈ossbauer spectrum consists of a series of doublet dips. The energy separation
between dips of a doublet depends on the coupling strength between the two spin 1/2 nuclear
ground states and the rf field. This coupling strength is expressed as1. As1 increases the
separation between the doublet peaks increases. Furthermore the asymmetry of the dips in
the doublets depends on the value of the rf frequency compared to the resonance frequency
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Figure 6. Mössbauer transition spectra using a Zeeman-split57Fe source and a single-line
absorber when the photon direction is perpendicular to the Zeeman field in the presence of rf
coupling in the ground state as in figure 4(b). In this case the rf radiation is off resonance;
ω = 0.99 ωg (a), andω = 1.01 ωg (b). Notice the asymmetry in the doublet dips.

ωg. The characteristic shape of asymmetry in the dips will tell the experimenter whether the
rf frequency is below or above the resonant frequency. It may prove possible to measure
the ground state splitting or the rf frequency very accurately using this procedure.

It is interesting to note the agreement of some of our results with the corresponding cases
obtained by Gabriel [14] (compare the upper half of figure 1 in [14] with our figure 3(b)
and 6). The simulated spectra of figure 5 in [15] are also compatible with our results. The
authors of [14] and [15] take a classical field approach to describe the rf field, as has already
been mentioned.

In [16] the first Mössbauer experimental observation of Rabi splitting due to rf coupling
of nuclear levels is demonstrated. They used a single line57CoRh source and an absorber
in which the hyperfine sublevels of the Zeeman-split excited- or ground-state57Fe nuclei
embedded in Fe18Ni82 are coupled by an rf field. Their theoretical results for the transverse
rf-field application (see figure 1(d) in [16]) agree with ours. Their experimental results (see
figure 2 in [16]) apply to the situation where there is a distribution of hyperfine magnetic
fields, which broadens the spectrum. Our model can be adapted easily to take into account
any distribution of hyperfine fields. Several other theoretical studies have been performed,
all based on a classical radiation field [17–22]. For a brief summary see [6].

The main advantage of the model presented in this paper is that it gives simple analytical
expressions for the line intensities and relative transition probabilities for the emitted photons
in a transverse applied rf field when the sample has a constant Zeeman magnetic field
perpendicular to the applied rf magnetic flux density and the emission direction is also
perpendicular to the applied rf magnetic flux density. The Mössbauer spectra, for such
cases, can be derived easily from these results. In the dressed-state model all operators are
time independent. So the energy eigenvalues of the system are also time independent. Now
the possible initial states of the system are nothing but the undressed states (given by (5)
and (6)), not eigenstates of the total Hamiltonian. However these states can be expressed as
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a linear combination of the eigenstates of the system. Since the eigenstates of the system
are stationary states, the time evolution of the possible initial states of the system is easily
obtained as indicated in section 3.3.

6. Conclusions

Based on the model of ‘dressed nuclei’ we have investigated the interaction of a transverse
rf-radiation field with the ground-state Zeeman sublevels in the case of a ground-state nuclear
spin 1/2. This model considers the global quantum system of nuclei in a static hyperfine
magnetic field and a quantized applied rf-radiation field in the Schrödinger picture. We
have shown that when spontaneous emission occurs for this case via a magnetic dipole
transition, for a nuclear excited-state spin 3/2, it is possible that 12 differentγ -transitions are
produced. The energies corresponding to these transitions as well as the relative intensities
are calculated for all directions of emission in the plane transverse to the rf magnetic flux
density. The M̈ossbauer spectra, the source being an ensemble of dressed nuclei (ground-
state ‘dressing’) and a single-line absorber, consist of, at most, 12 resonances for an arbitrary
direction of emission. At exact resonance it is seen that each component of the original
line (no rf) splits into a symmetric doublet. A treatment along the same lines could be
used to study the spectrum when coupling occurs in the excited-state Zeeman sublevels.
The expressions are expected to be more cumbersome, although the analysis should be
straightforward. In fact, the most general case of rf coupling to the excited- or ground-state
nuclear levels can be handled using the methods applied in this paper.
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